
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 21. October 2018
Markus Püschel, David Steurer

Datenstrukturen & Algorithmen Bla� P5 HS 17

Please remember the rules of honest conduct:

• Programming exercises are to be solved alone

• Do not copy code from any source

• Do not show your code to others

Hand-in: Sunday, 04. November 2018, 23:59 clock via Online Judge (source code only).
�estions concerning the assignment will be discussed as usual in the forum.

Exercise P5.1 Skier.

Sarah is a passionate skier, visiting Zerma� for a weekend trip. �e ski resort at Zerma� has multi-
ple mountain peaks, many ski trails and fast ski-li�s. By looking at the map, Sarah realizes that the
mountain peaks are interconnected, in two ways: either there is a ski-trail that goes downhill from
one mountain peak to the other, or a ski-li� that goes uphill. But unfortunately, not all two mountain
peaks are directly connected with a ski-trail or a ski-li� at all, and in some cases two mountain peaks
are directly connected both ways - with a ski-trail downhill and a ski-li� uphill.

To be able to take the best of the weekend trip and see much of Zerma�, Sarah likes to �nd whether
there is at least one mountain peak that can reach all other mountain peaks.

Note that in this context, we de�ne reachability as either having a direct connection from one peak to
the other, or indirect connection though a set of one or more peaks in between. Both the direct and
indirect connections can be either though a ski-li� or ski-trail, or any combination of the two.

Input �e input consists of a set of instances, or test-cases, of the previous problem. �e �rst line of
the input contains the number T of test-cases. �e �rst line of each test-case are the integers V and E,
where V corresponds to number of mountain peaks in the ski-resort, andE corresponds to the number
of connections in the ski-resort. �e nextE lines describe the connection in the ski resort. In particular,
the (n + 2)-th line of the test-case contains two integers i and j, that describe a directed connection
from mountain peak i to j. Note that mountain peaks do not have names, but are enumerated with
numbers such that the �rst mounting peak starts at 0: 0, 1, . . . V − 1. We constrain V and E such that
1 ≤ V ≤ 1000 and 0 ≤ E ≤ V ·(V−1)

2

Output �e output consists of T lines, each containing either Yes orNo, depending on whether there
exist a mounting peak that can reach all other mountain peaks.

Grading You get 3 bonus points if your program works for all inputs. Your algorithm should have an
asymptotic time complexity of O(V + E) with reasonable hidden constants. Submit your Main.java
at https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H5P1. �e enrolment
password is “asymptotic”.

https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H5P1


Example

Input:

2

7 8

0 1

0 2

1 3

4 1

6 4

6 0

5 2

5 6

3 2

0 1

2 1

Output:

Yes

No

Notes For this exercise we provide an archive on the lecture website, available at https://www.
cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H5P1.Skier.zip containing a program
template that will load the input and write the output for you. �e archive also contains additional test
cases (which di�er from the ones used for grading). Importing any additional Java class is not allowed
(with the exception of the already imported java.util.{Scanner, LinkedList, Iterator, Stack},
as well as java.io.{InputStream, OutputStream} classes).

Solution In this problem, we are looking for a mountain peak that can reach all other mountain peaks.
In other words, we are looking for a vertex vi that can reach all other vertices v1, v2, . . . , vV assuming
there is a path from vi to all v1, v2, . . . , vV . �is is the well-known problem of �nding a mother vertex
in a graph. We can solve this problem using depth �rst search (DFS) algorithm, as shown below:

// Create a structure to keep track of visited vertices

boolean visited [] = new boolean[V];

for (int i = 0; i < V; i += 1) visited[i] = false;

// Spawn a DFS from each unvisited vertex and keep track of the ones visited

int v = -1;

for (int i = 0; i < V; i += 1) if (! visited[i]) {

DFS(adj , visited , i);

v = i;

}

// v is now candidate for a mother vertex , so spawn another DFS to validate

for (int i = 0; i < V; i += 1) visited[i] = false;

DFS(adj , visited , v);

// check whether all other vertices have been visited

boolean isMotherVertex = true;

for (int i = 0; i < V; i++) { isMotherVertex = isMotherVertex && visited[i]; }

�e algorithm works in two steps:

2

https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H5P1.Skier.zip
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H5P1.Skier.zip


1. Performs DFS traversal of the given graph. While doing traversal, it keeps track of the visited
vertices and also keeps track of the last �nished vertex v. �is step takes O(V +E) time, as the
algorithm is not visiting the vertices that have already been visited before.

2. If there exist mother vertex (or vertices), then v must be one (or one of them). Check if v is a
mother vertex by doing DFS starting from v. �is step also takes O(V + E) time.

If there a exist mother vertex (or vertices), then one of the mother vertices is the last �nished vertex in
DFS (a vertex is said to be �nished in DFS if an iterative (or recursive) call for its DFS is over, i.e., all
descendants of the vertex have been visited).

Correctness

Let the last �nished vertex be v. We need to prove that there cannot be an edge from another vertex u
to v if u is not another mother vertex (Or there cannot exist a non-mother vertex u such that u→ v is
an edge). �ere can be two possibilities.

1. DFS call is made for u before v. If an edge u → v exists, then v must have �nished before u
because v is reachable through u and a vertex �nishes a�er all its descendants.

2. DFS call is made for v before u. In this case also, if an edge u → v exists, then either v must
�nish before u (which contradicts our assumption that v is �nished at the end) or u should be
reachable from v (which means u is another mother vertex).

�us v must be a mother vertex.

Exercise P5.2 Submatrix Sum.

You are given a n × n matrix M =
(
mi,j

)
in which each entry mi,j with 1 ≤ i, j ≤ n is an integer

between 0 and 1000 (rows and columns are numbered from 1 to n, from top-le� to bo�om-right). Your
task is to design a data structure that, a�er preprocessing the matrixM , is able to support the following
query operation: Given a, b, c, d ∈ Z with 1 ≤ a ≤ b ≤ n and 1 ≤ c ≤ d ≤ n, return

S(a, b, c, d) =
∑

a≤i≤b
c≤j≤d

mi,j .

Input �e �rst line of the input contains the integer n. Each of the following n lines is one row of
M . More precisely, the (i+1)-th line of the input contains the n integersmi,1, . . . ,mi,n. �e (n+2)-th
line of the input contains the numberm of queries to be answered and the i-th of the followingm lines
(1 ≤ i ≤ m) contains four integers ai, bi, ci, di.

Output

�e output consists ofm lines, where the i-th line contains the answer to the i-th query, i.e., the number
S(ai, bi, ci, di).

Grading �is exercise rewards no bonus points. Your algorithm should require time O(n2) prepro-
cessing time and it should answer each query in constant time. Submit your Main.java at https://
judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H5P2. �e enrollment password
is “asymptotic”.

Example

Input (corresponding to the matrix in Table 1):

3

https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H5P2
https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H5P2


5 3 1 5 0
8 0 4 3 6
1 6 1 5 1
0 7 9 1 7
4 5 8 8 3

Table 1: Example of matrixM with n = 5.

5

5 3 1 5 0

8 0 4 3 6

1 6 1 5 1

0 7 9 1 7

4 5 8 8 3

3

1 4 2 5

4 5 2 4

2 2 3 3

Output:

59

38

4

Notes For this exercise we provide an archive on the lecture website, available at https://www.
cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H5P2.SubMatrixSum.zip. �e archive
also contains additional test cases (which di�er from the ones used for grading). Importing any addi-
tional Java class is not allowed (with the exception of the already imported java.util.Scanner as
well as java.io.{InputStream, OutputStream} class).

Solution Wewant to pre-compute inO(n2) time all the values qi,j =
∑i

h=1

∑j
k=1mi,j for 0 ≤ i, j ≤

n. �is can be done by noticing that, for all 0 < i, j ≤ n:

qi,j = ai,j + qi−1,j + qi,j−1 − qi−1,j−1,

where q0,j and qi,0 are equal to 0 by de�nition.

Once all the values qi,j have been computed, it is possible to answer a query in constant time. Indeed,
we have:

S(a, b, c, d) =
∑

a≤i≤b
c≤j≤d

mi,j = qb,d − qa−1,d − qb,c−1 + qa−1,c−1.

4

https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H5P2.SubMatrixSum.zip
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H5P2.SubMatrixSum.zip

