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Please remember the rules of honest conduct:

• Programming exercises are to be solved alone

• Do not copy code from any source

• Do not show your code to others

Hand-in: Sunday, 04. November 2018, 23:59 clock via Online Judge (source code only).
�estions concerning the assignment will be discussed as usual in the forum.

Exercise P5.1 Skier.

Sarah is a passionate skier, visiting Zerma� for a weekend trip. �e ski resort at Zerma� has multi-
ple mountain peaks, many ski trails and fast ski-li�s. By looking at the map, Sarah realizes that the
mountain peaks are interconnected, in two ways: either there is a ski-trail that goes downhill from
one mountain peak to the other, or a ski-li� that goes uphill. But unfortunately, not all two mountain
peaks are directly connected with a ski-trail or a ski-li� at all, and in some cases two mountain peaks
are directly connected both ways - with a ski-trail downhill and a ski-li� uphill.

To be able to take the best of the weekend trip and see much of Zerma�, Sarah likes to �nd whether
there is at least one mountain peak that can reach all other mountain peaks.

Note that in this context, we de�ne reachability as either having a direct connection from one peak to
the other, or indirect connection though a set of one or more peaks in between. Both the direct and
indirect connections can be either though a ski-li� or ski-trail, or any combination of the two.

Input �e input consists of a set of instances, or test-cases, of the previous problem. �e �rst line of
the input contains the number T of test-cases. �e �rst line of each test-case are the integers V and E,
where V corresponds to number of mountain peaks in the ski-resort, andE corresponds to the number
of connections in the ski-resort. �e nextE lines describe the connection in the ski resort. In particular,
the (n + 2)-th line of the test-case contains two integers i and j, that describe a directed connection
from mountain peak i to j. Note that mountain peaks do not have names, but are enumerated with
numbers such that the �rst mounting peak starts at 0: 0, 1, . . . V − 1. We constrain V and E such that
1 ≤ V ≤ 1000 and 0 ≤ E ≤ V ·(V−1)
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Output �e output consists of T lines, each containing either Yes orNo, depending on whether there
exist a mounting peak that can reach all other mountain peaks.

Grading You get 3 bonus points if your program works for all inputs. Your algorithm should have an
asymptotic time complexity of O(V + E) with reasonable hidden constants. Submit your Main.java
at https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H5P1. �e enrolment
password is “asymptotic”.

https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H5P1


Example

Input:

2

7 8

0 1

0 2

1 3

4 1

6 4

6 0

5 2

5 6

3 2

0 1

2 1

Output:

Yes

No

Notes For this exercise we provide an archive on the lecture website, available at https://www.
cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H5P1.Skier.zip containing a program
template that will load the input and write the output for you. �e archive also contains additional test
cases (which di�er from the ones used for grading). Importing any additional Java class is not allowed
(with the exception of the already imported java.util.{Scanner, LinkedList, Iterator, Stack},
as well as java.io.{InputStream, OutputStream} classes).

Solution In this problem, we are looking for a mountain peak that can reach all other mountain peaks.
In other words, we are looking for a vertex vi that can reach all other vertices v1, v2, . . . , vV assuming
there is a path from vi to all v1, v2, . . . , vV . �is is the well-known problem of �nding a mother vertex
in a graph. We can solve this problem using depth �rst search (DFS) algorithm, as shown below:

// Create a structure to keep track of visited vertices

boolean visited [] = new boolean[V];

for (int i = 0; i < V; i += 1) visited[i] = false;

// Spawn a DFS from each unvisited vertex and keep track of the ones visited

int v = -1;

for (int i = 0; i < V; i += 1) if (! visited[i]) {

DFS(adj , visited , i);

v = i;

}

// v is now candidate for a mother vertex , so spawn another DFS to validate

for (int i = 0; i < V; i += 1) visited[i] = false;

DFS(adj , visited , v);

// check whether all other vertices have been visited

boolean isMotherVertex = true;

for (int i = 0; i < V; i++) { isMotherVertex = isMotherVertex && visited[i]; }

�e algorithm works in two steps:
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1. Performs DFS traversal of the given graph. While doing traversal, it keeps track of the visited
vertices and also keeps track of the last �nished vertex v. �is step takes O(V +E) time, as the
algorithm is not visiting the vertices that have already been visited before.

2. If there exist mother vertex (or vertices), then v must be one (or one of them). Check if v is a
mother vertex by doing DFS starting from v. �is step also takes O(V + E) time.

If there a exist mother vertex (or vertices), then one of the mother vertices is the last �nished vertex in
DFS (a vertex is said to be �nished in DFS if an iterative (or recursive) call for its DFS is over, i.e., all
descendants of the vertex have been visited).

Correctness

Let the last �nished vertex be v. We need to prove that there cannot be an edge from another vertex u
to v if u is not another mother vertex (Or there cannot exist a non-mother vertex u such that u→ v is
an edge). �ere can be two possibilities.

1. DFS call is made for u before v. If an edge u → v exists, then v must have �nished before u
because v is reachable through u and a vertex �nishes a�er all its descendants.

2. DFS call is made for v before u. In this case also, if an edge u → v exists, then either v must
�nish before u (which contradicts our assumption that v is �nished at the end) or u should be
reachable from v (which means u is another mother vertex).

�us v must be a mother vertex.

Exercise P5.2 Submatrix Sum.

You are given a n × n matrix M =
(
mi,j

)
in which each entry mi,j with 1 ≤ i, j ≤ n is an integer

between 0 and 1000 (rows and columns are numbered from 1 to n, from top-le� to bo�om-right). Your
task is to design a data structure that, a�er preprocessing the matrixM , is able to support the following
query operation: Given a, b, c, d ∈ Z with 1 ≤ a ≤ b ≤ n and 1 ≤ c ≤ d ≤ n, return

S(a, b, c, d) =
∑

a≤i≤b
c≤j≤d

mi,j .

Input �e �rst line of the input contains the integer n. Each of the following n lines is one row of
M . More precisely, the (i+1)-th line of the input contains the n integersmi,1, . . . ,mi,n. �e (n+2)-th
line of the input contains the numberm of queries to be answered and the i-th of the followingm lines
(1 ≤ i ≤ m) contains four integers ai, bi, ci, di.

Output

�e output consists ofm lines, where the i-th line contains the answer to the i-th query, i.e., the number
S(ai, bi, ci, di).

Grading �is exercise rewards no bonus points. Your algorithm should require time O(n2) prepro-
cessing time and it should answer each query in constant time. Submit your Main.java at https://
judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H5P2. �e enrollment password
is “asymptotic”.

Example

Input (corresponding to the matrix in Table 1):

3

https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H5P2
https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H5P2


5 3 1 5 0
8 0 4 3 6
1 6 1 5 1
0 7 9 1 7
4 5 8 8 3

Table 1: Example of matrixM with n = 5.

5

5 3 1 5 0

8 0 4 3 6

1 6 1 5 1

0 7 9 1 7

4 5 8 8 3

3

1 4 2 5

4 5 2 4

2 2 3 3

Output:

59

38

4

Notes For this exercise we provide an archive on the lecture website, available at https://www.
cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H5P2.SubMatrixSum.zip. �e archive
also contains additional test cases (which di�er from the ones used for grading). Importing any addi-
tional Java class is not allowed (with the exception of the already imported java.util.Scanner as
well as java.io.{InputStream, OutputStream} class).

Solution Wewant to pre-compute inO(n2) time all the values qi,j =
∑i

h=1

∑j
k=1mi,j for 0 ≤ i, j ≤

n. �is can be done by noticing that, for all 0 < i, j ≤ n:

qi,j = ai,j + qi−1,j + qi,j−1 − qi−1,j−1,

where q0,j and qi,0 are equal to 0 by de�nition.

Once all the values qi,j have been computed, it is possible to answer a query in constant time. Indeed,
we have:

S(a, b, c, d) =
∑

a≤i≤b
c≤j≤d

mi,j = qb,d − qa−1,d − qb,c−1 + qa−1,c−1.
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